Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.035
Filtrar
1.
Mar Pollut Bull ; 200: 116160, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377865

RESUMO

Polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polychlorinated naphthalenes (PCNs) were assessed in coastal sediments from industrial bays in South Korea to evaluate the pollution levels and their environmental impact. The mean sediment concentrations of Σ17 PCDD/Fs, Σ18 PCBs, and Σ15 PCNs were 198 ± 140, 3427 ± 7037, and 85 ± 336 pg/g dw, respectively. Generally, pollutant concentrations in the inner bay were higher than those in the outer bay, indicating the influence of industrial emissions and harbor activities. The primary sources were identified as steel manufacturing and wastewater treatment plants for PCDD/Fs, harbor and shipbuilding activities for PCBs, and combustion-related sources for PCNs. Notably, PCDD/F concentrations exceeded sediment guideline values. The combined effects of PCDD/Fs and PCBs demonstrated adverse impacts on aquatic organisms. Hence, the release of toxic pollutants into the marine environment could have potential biological effects due to the combined impact of these various compounds.


Assuntos
Dioxinas , Poluentes Ambientais , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Bifenilos Policlorados/análise , Dibenzodioxinas Policloradas/análise , Baías , Dibenzofuranos , Naftalenos/análise , República da Coreia , Dibenzofuranos Policlorados , Dioxinas/análise
2.
Chemosphere ; 352: 141330, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301841

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are produced primarily during incomplete combustion of organic matter and in various industrial processes. They are widespread environmental pollutants that are of significant interest due to their potential toxicity. Humans can be exposed to PAHs through ingestion, inhalation and dermal contact. In the present study, ten urinary PAH biomarkers were determined in first-morning urine samples (n = 504) from the adult population (aged 18-65 years) residing in the Valencian Region of Spain. These samples were analysed using liquid-liquid extraction followed by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). All PAH biomarkers were quantified in more than 65 % of the urine samples. Naphthalene biomarkers, 1-hydroxynaphthalene (1OHNAP) and 2-hydroxynaphthalene (2OHNAP), exhibited the highest levels with geometric means (GMs) of 0.7 and 11.9 µg L-1, respectively. The 95th percentile of all PAH biomarkers ranged from 0.22 to 64.8 µg L-1. Estimated daily intakes (EDIs) for the analysed PAH families in the studied population ranged from 17 (pyrene) to 18581 (naphthalene) ng·kg-bw-1·day-1 (GM). Significant associations were observed between the quantified urinary metabolites of PAHs and smoking status, home location, annual household incomes, BMI, and the consumption of grilled food in the last 24 h. Hazard quotients (HQs) of naphthalene and consequently, hazard indexes (HIs) were above 1, especially for smokers. Therefore, potential health risks associated with PAH exposure in the target population could not be discarded.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Adulto , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Biológico , Espectrometria de Massas em Tandem , Monitoramento Ambiental/métodos , Naftalenos/análise , Medição de Risco , Biomarcadores/urina
3.
Sci Total Environ ; 917: 170605, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38307290

RESUMO

Fish are an important source of human dietary exposure to polychlorinated naphthalenes (PCNs). The occurrence and sources of PCNs in different species of freshwater fish are unknown, and few studies have assessed human exposure risks to PCNs through freshwater fish. In this study, 140 freshwater fish samples from 10 species were collected from Beijing markets, China. The Σ75CNs concentration range in the fish was 20.7-1310 pg/g wet weight (ww). The highest median Σ75PCNs concentration (80.4 pg/g ww) was found in mandarin fish (Siniperca chuatsi), and the lowest (29.6 pg/g ww) in snakehead (Channa argus). Di- and tri-CNs were the dominant PCN homologues with contributions of 35.3 % and 30.8 %, respectively. Unintentionally produced PCNs from metal smelting might be the source of PCN contamination in freshwater fish. The cooking temperature and time did not significantly affect the PCN concentrations in fish or the PCN homologue profiles. The highest toxic equivalent (TEQ) value was observed in sturgeon (Acipenser sinensis), followed by mandarin fish. Hexa-CNs were the most abundant homologue for the PCN TEQs. A risk assessment indicated that the dietary exposure risks for local residents to PCNs through freshwater fish were low. However, the relatively high concentrations of PCNs in the samples deserve attention to avoid PCNs exposure risks for groups with high fish consumption rates. Furthermore, freshwater fish likely contain a mixture of contaminants including dioxin and furans which also display a similar mode of toxicity as the PCNs and could enhance the risk to fish consumers.


Assuntos
Naftalenos , Dibenzodioxinas Policloradas , Animais , Humanos , Pequim , Naftalenos/análise , Dibenzodioxinas Policloradas/análise , Água Doce , Medição de Risco , Monitoramento Ambiental
4.
Mar Pollut Bull ; 201: 116187, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412796

RESUMO

Naphthalene (NAP) and phenanthrene (PHE) are prevalent Polycyclic Aromatic Hydrocarbons (PAHs) in the environment. High-Performance Liquid Chromatography (HPLC) analysis was performed on marine water samples (n = 57) collected from 19 locations. Molecular screening of the aromatase (CYP19) gene expression was examined using quantitative Reverse Transcriptase PCR (qRT-PCR). The findings of the study showed a significant range of naphthalene concentrations along the coastline, spanning from 1.70 to 15.05 mg/L, where phenanthrene concentrations varied from undetectable to a maximum of 5.36 mg/L. The relative expression of the CYP19 gene ranged from 0.5 to 13.9 in the sampling sites. The ANOVA analysis showed a significant positive correlation (p < 0.05) between the concentrations of PAHs and CYP19 gene expression. The study concluded that the CYP19 gene could be useful in detecting contaminants such as naphthalene and phenanthrene in water. This study may help develop effective strategies to detect and mitigate PAH pollution in coastal areas.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Aromatase/genética , Sri Lanka , Poluentes Químicos da Água/análise , Naftalenos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Fenantrenos/análise , Biomarcadores , Água/análise
5.
Environ Res ; 247: 118160, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38199464

RESUMO

Vulnerable populations, such as pregnant women and their fetuses, confront potential health risks due to exposure to environmental toxic compounds. Computational methods have been popular in assessing chemical exposure to populations, contrasting with traditional cohort studies for human biomonitoring. This study proposes a screening-level approach based on physiologically based kinetic (PBK) modeling to evaluate the steady-state exposure of pregnant women to environmental chemicals throughout pregnancy. To exemplify the modeling application, naphthalene was chosen. Simulation results indicated that maternal fat exhibited significant bioaccumulation potential, with the log-transformed BTF of naphthalene at 0.51 mg kg-1 per mg d-1 in the steady state. The placenta was primarily exposed to 0.83 mg/d naphthalene for a 75.2 kg pregnant woman, considering all exposure routes. In the fetal structure, single-organ fetal PBK modeling estimated a naphthalene exposure of 123.64 mg/d to the entire fetus, while multiple-organ fetal PBK modeling further revealed the bioaccumulation highest in fat tissue. The liver identified as the vital organ for metabolism, kBioT,LiverM was demonstrated with the highest sensitivity among rate constants in the maternal body. Furthermore, the first-order kinetic rate constants related to the placenta and blood were found to impact the distribution process of naphthalene in the fetus, influencing gestational exposure. In conclusion, urgent attention is needed to develop a computational biomonitoring tool for assessing toxic chemical exposure in vulnerable populations.


Assuntos
Placenta , Gestantes , Humanos , Gravidez , Feminino , Placenta/química , Feto/metabolismo , Simulação por Computador , Naftalenos/análise , Naftalenos/metabolismo
6.
Chemosphere ; 350: 141004, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141682

RESUMO

Polychlorinated naphthalenes (PCNs) were characterized as persistent organic pollutants (POPs) that were widely distributed in the environment. Although the striking in vivo toxicity of these pollutants towards both animals and humans was well documented, their cytotoxicity and mechanism of action have not been extensively investigated. In this study, the in vitro antiproliferative activity of mono- and di-chloronaphthalenes as representative PCNs were evaluated and the results indicated strong growth inhibitory effects against mammalian cells, especially the human breast MCF-10A cell and human hepatic HL-7702 cells. 2-Chloronaphthalene with the most potent antiproliferative effects within the tested PCNs, which showed IC50 values ranging from 0.3 mM to 1.5 mM against selected human cell lines, was investigated for its working mechanisms. It promoted cellular apoptosis of MCF-10A cells upon the concentration of 200 µM. It also induced the autophagy of MCF-10A cells in a dose-dependent manner, resulting in cell death via the interaction of autophagy and apoptosis. Thus, these findings supported the theoretical foundation for interventional treatment of PCNs toxicity and also provided implications for the use of chemopreventive agents against the toxic chlorinated naphthalenes in the environments.


Assuntos
Poluentes Ambientais , Animais , Humanos , Poluentes Ambientais/análise , Fígado/química , Naftalenos/toxicidade , Naftalenos/análise , Apoptose , Mamíferos
7.
J Agric Food Chem ; 72(1): 773-782, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109498

RESUMO

Infant formula is intended as an effective substitute for breast milk but is the main source of polychlorinated naphthalenes (PCNs) to nonbreastfed infants. We performed target and nontarget analyses to determine PCNs and identify other organic contaminants in infant formula. The mean PCN concentrations in infant formula, milk powder, and bovine milk were 106.1, 88.8, and 78.2 µg kg-1 of dry weight, respectively. The PCN congener profiles indicated that thermal processes and raw materials were probably the main sources of PCNs in infant formula. A health risk assessment indicated that PCNs in infant formula do not pose health risks to infants. Using gas chromatography-Orbitrap mass spectrometry, 352, 372, and 161 organic chemicals were identified in the infant formula, milk powder, and bovine milk samples, respectively. Phthalate esters were detected in all four plastic-packed milk powder samples. The results indicated milk becomes more contaminated with organic chemicals during manufacturing, processing, and packaging.


Assuntos
Fórmulas Infantis , Naftalenos , Lactente , Humanos , Pós , Naftalenos/análise , Fórmulas Infantis/análise , Cromatografia Gasosa-Espectrometria de Massas , Leite Humano/química , Monitoramento Ambiental
8.
Environ Sci Process Impacts ; 25(12): 2167-2180, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37982278

RESUMO

Toxic chemicals are released into the environment through diverse human activities. An increasing number of chronic diseases are associated with ambient pollution, thus posing a threat to people. Given the high consumption of resources for human biomonitoring, this study proposed coupled physiologically-based kinetic (co-PBK) modeling matrices as a biomonitoring tool for simplifying chronic internal exposure estimates of environmental chemicals and their metabolites using naphthalene (NAP) and its metabolites (i.e., 1-OHN and 2-OHN) as simulation examples. According to the simulation of the steady-state mass among various organs/tissues via the co-PBK modeling matrices, fat had the highest potential bioaccumulation of NAP and its metabolites. With respect to body fluids, 1-OHN and 2-OHN tended to bioaccumulate more in the bile than in the urine. According to the sensitivity analysis, the calculated sensitivity factors for the first-order kinetics-based rate constants imply that due to the biotransformation process, target organs/tissues (e.g., liver and kidneys) would be continuously exposed to more NAP metabolites under chronic exposure. Meanwhile, 1-OHN may be more stably transported to the urine than 2-OHN for further human biomonitoring during long-term internal exposure. According to the case study of simulating population chronic exposure to NAP in Shenzhen, the co-PBK modeling estimated the population exposure to NAP with an intake rate of 8.77 × 10-2 mg d-1 and the aggregated urinary concentration of NAP metabolites of 2.60 µg L-1. Furthermore, the accuracy of the urinary levels between the real-world data and the values simulated by the co-PBK modeling was assessed and the root-mean-square error of c1-OHN,urine was found to be lower than that of c2-OHN,urine.


Assuntos
Monitoramento Biológico , Naftalenos , Humanos , Naftalenos/análise , Simulação por Computador , Exposição Ambiental/análise
9.
Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi ; 41(10): 814-820, 2023 Oct 20.
Artigo em Chinês | MEDLINE | ID: mdl-37935546

RESUMO

Objective: To explore benchmark dose (BMD) estimations of polycyclic aromatic hydrocarbons (PAHs) based on Bayesian kernel machine regression (BKMR) . Methods: A total of 155 adult residents of a coking plant in Shanxi Province who were surveyed in summer (June to August) from 2014 to 2019 were selected as the research objects. Fasting elbow vein blood of the subjects was collected in the morning for automatic analysis and detection of blood routine. Morning urine samples were collected for automatic analysis and detection of urine routine and urine creatinine detection. BKMR model combined with BMD method was used to calculate the acceptable doses of PAHs exposure on red blood cell damage in non-occupational population. Results: The concentration of hydroxylpolycyclic aromatic hydrocarbons (OH-PAHs) in the red blood cells abnormal group (n=117) was significantly higher than that in the normal group (n=38) (P<0.01). In the combined effect of OH-PAHs, 2-hydrol-naphthalene contributed the most, and the posterior inclusion probability (PIP) value was 0.9354. When OH-PAHs ≥P(55) concentration, the joint effect on the risk of red blood cell abnormalities increased as the concentration of the OH-PAHs mixture increased. When OH-PAHs were at P(65) and P(75) concentrations, respectively, the risk of red blood cell abnormalities in adults were 3.09 and 4.98 times that of OH-PAHs at P(50) concentrations, respectively. Compared with high concentration, low concentration of OH-PAHs exposure was more sensitive to red blood cell darmage. The acceptable doses of 8 kinds of OH-PAHs were 1.010 µmol/mol Cr (2-hydrol-naphthalene), 0.743 µmol/mol Cr (1-hydrol-naphthalene), 0.901 µmol/mol Cr (2-hydroxy-fluorene) and 0.775 µmol/mol Cr (1-hydroxy-phenanthrene), 0.737 µmol/mol Cr (1-hydroxy-pyrene), 0.607 µmol/mol Cr (9-hydroxy-fluorene), 0.713 µmol/mol Cr (2-hydroxy-phenanthrene) and 0.628 µmol/mol Cr (3-hydroxybenzo[a] pyrene), respectively. Conclusion: OH-PAHs mixture has positive combined effect on red blood cell damage in non-occupational population, and low concentration of OH-PAHs exposure is more sensitive to red blood cell damage. It is recommended that the exposure dose of PAHs should be controlled within 1 µmol/mol Cr.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Benchmarking , Teorema de Bayes , Monitoramento Ambiental/métodos , Pirenos/análise , Naftalenos/análise , Fenantrenos/análise , Fluorenos/análise , Biomarcadores/urina
10.
Environ Geochem Health ; 45(10): 7099-7113, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37530922

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants that are generated by the incomplete combustion of organic materials. The main anthropogenic sources of PAHs are the combustion of solid fuels for heating purposes, illegal waste incineration, road transport and industries based on fossil fuels. PAHs can easily enter the body because they are present in all elements of the environment, including water, soil, air, and food. Due to their ubiquitous presence, PAHs, may exert a harmful effect on human health. Assessing PAH exposure through biomonitoring mostly involve techniques to measure the concentration of 1-hydroxypyrene in human urine. Nevertheless, through recent progress in analytical techniques, other common metabolites of PAHs in human biospecimens can be detected. A scientific literature search was conducted to determine which hydroxy derivatives of PAHs are markers of PAHs exposure and to reveal the leading sources of these compounds. Techniques for analyzing biological samples to identify OH-PAHs are also discussed. The most frequently determined OH-PAH in human urine is 1-hydroxypyrene, the concentration of which reaches up to a dozen ng/L in urine. Apart from this compound, the most frequently determined biomarkers were naphthalene and fluorene metabolites. The highest concentrations of 1- and 2-hydroxynaphthalene, as well as 2-hydroxyfluorene, are associated with occupational exposure and reach approximately 30 ng/L in urine. High molecular weight PAH metabolites have been identified in only a few studies. To date, PAH metabolites in feces have been analyzed only in animal models for PAH exposure. The most frequently used analytical method is HPLC-FLD. However, compared to liquid chromatography, the LOD for gas chromatography methods is at least one order of magnitude lower. The hydroxy derivatives naphthalene and fluorene may also serve as indicators of PAH exposure.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Animais , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental/métodos , Fluorenos/análise , Naftalenos/análise , Biomarcadores/urina
11.
Environ Sci Pollut Res Int ; 30(39): 91226-91236, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37470974

RESUMO

Due to the high exposure toxicity and individual variability of polycyclic aromatic hydrocarbons (PAHs), it is difficult to accurately characterize the actual exposure of exposed individuals through external exposure detection. In this study, the monohydroxyl metabolites of naphthalene, phenanthrene, pyrene, and 9-fluorenone were identified in the urine of low-dose PAH-exposed individuals based on ultra-performance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS), and their concentrations were monitored for 15 consecutive days after exposure. The results showed that the metabolite concentrations of naphthalene, phenanthrene, and pyrene were basically the same, and all of them reached the maximum value at day 8. In contrast, the metabolite of 9-fluorenone reached its maximum value on day 2. This study showed that the four metabolites were strongly correlated with their parent PAH exposure, with a wide detection window, and their assays were specific, sensitive, and reliable, while the sampling difficulty was low, so the four hydroxylated PAHs may be potential low-dose biomarkers of PAH internal exposure. This study will provide methodological and data support for further health risk studies involving internal exposure to organic pollutants such as PAHs.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Pirenos/análise , Fenantrenos/análise , Naftalenos/análise , Biomarcadores/urina , Monitoramento Ambiental/métodos
12.
Sci Total Environ ; 891: 164573, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37277038

RESUMO

This study evaluates the non-cancer risks (NCR) and cancer risks (CR) in outdoor working personnel in Dhanbad city, exposed to volatile organic compounds (VOCs) and particulate matter (PM) present in the ambient air. Dhanbad is known for its coal mines and is one of the most polluted cities in India and the world. Sampling was conducted in different functional zones; namely, traffic intersections, industrial, and institutional areas, to estimate the concentration of different PM-bound heavy metals and VOCs in the ambient air using Inductively coupled plasma-optical emission spectrometry (ICP-OES) and gas chromatography (GC) respectively. Our results show that the concentration levels (of VOCs and PM) and health risks were maximum at the traffic intersection area, followed by the industrial and institutional areas. The major contribution to CR came from chloroform, naphthalene, and PM-bound chromium, while the contribution to NCR mainly came from naphthalene, trichloroethylene, xylenes, and PM-bound chromium, nickel, and cadmium. It was observed that CR and NCR from VOCs are quite comparable (average CRvoc 8.92E-05 and NCRvoc 6.82) to that from the PM-bound heavy metals (average CRPM 9.93E-05 and NCRPM 3.52). According to the sensitivity analysis performed using Monte-Carlo Simulation, it was also found that the output risk is most significantly influenced by the pollutant concentration followed by exposure duration and exposure time. The study reveals that Dhanbad city is not only a critically polluted area but also a highly hazardous and cancer-prone area due to the pollution arising from incessant coal mining activities and heavy vehicular movement. Given the paucity of data on exposure to VOCs in ambient air and their risk assessment pertaining to coal mining cities of India, our study provides useful information and insight for the regulatory and enforcing authorities to devise appropriate strategies for air pollution and health risk management in such cities.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Compostos Orgânicos Voláteis , Material Particulado/análise , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas , Medição de Risco , Metais Pesados/análise , Naftalenos/análise , Índia , Cromo/análise
13.
Environ Sci Process Impacts ; 25(7): 1169-1180, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37313682

RESUMO

Microplastics are environmentally ubiquitous and their role in the fate and distribution of trace contaminants is of emerging concern. We report the first use of membrane introduction mass spectrometry to directly monitor the rate and extent of microplastic-contaminant sorption. Target contaminant (naphthalene, anthracene, pyrene, and nonylphenol) sorption behaviours were examined at nanomolar concentrations with four plastic types: low density polyethylene (LDPE), high density polyethylene (HDPE), polypropylene (PP), and polystyrene (PS). Under the conditions employed here, short-term sorption kinetics were assessed using on-line mass spectrometry for up to one hour. Subsequent sorption was followed by periodically measuring contaminant concentrations for up to three weeks. Short-term sorption followed first order kinetics with rate constants that scaled with hydrophobicity for the homologous series of polycyclic aromatic hydrocarbons (PAHs). Sorption rate constants on LDPE for equimolar solutions of naphthalene, anthracene, and pyrene were 0.5, 2.0, and 2.2 h-1, respectively, while nonylphenol did not sorb to pristine plastics over this time period. Similar trends among contaminants were observed for other pristine plastics with 4- to 10-fold faster sorption rates associated with LDPE when compared to PS and PP. Sorption was largely complete after three weeks, with the percent analyte sorbed ranging from 40-100% across various microplastic-contaminant combinations. Photo-oxidative ageing of LDPE had little effect on PAH sorption. However, a marked increase in nonylphenol sorption was consistent with increased hydrogen-bonding interactions. This work provides kinetic insights into surface interactions and describes a powerful experimental platform to directly observe contaminant sorption behaviours in complex samples under a variety of environmentally relevant conditions.


Assuntos
Plásticos , Poluentes Químicos da Água , Plásticos/análise , Microplásticos , Polietileno , Adsorção , Poluentes Químicos da Água/análise , Naftalenos/análise , Pirenos/análise , Poliestirenos/química , Polipropilenos , Espectrometria de Massas , Antracenos/análise
14.
Ecotoxicol Environ Saf ; 259: 114989, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37178614

RESUMO

Graphene hydrogel (GH) and aerogel (GA) have great application potential as highly effective adsorbents, but the accessibility of their adsorption sites have not yet been identified, restricting our understanding on the adsorption mechanisms and manufacturing. This study comparatively studied the adsorption characteristics of bisphenol A (BPA) and naphthalene (NAP) on GH and GA, focussing on the accessibility of the adsorption sites. The adsorption of BPA on GA was much lower but faster than that on GH. NAP adsorption on GA was very close to that on GH but faster than that on the latter. Considering that NAP is volatilisable, we speculate that some unwetted sites in the air-enclosed pores are available to it, but not to BPA. We applied ultrasonic and vacuum treatments to remove the air in GA pores, which was verified using a CO2 replacement experiment. BPA adsorption was greatly enhanced but slowed, while that of NAP was not enhanced. This phenomenon suggested that some inner pores became accessible in the aqueous phase after air removal from pores. The enhanced accessibility of air-enclosed pores was verified by the increased relaxation rate of surface-bounded water on GA, based on a 1H NMR relaxation analysis. This study highlights that the accessibility of adsorption site plays a crucial role for the adsorption properties of carbon-based aerogel. The volatile chemicals may be quickly adsorbed in the air-enclosed pores, which be useful for immobilizing volatile contaminants.


Assuntos
Grafite , Poluentes Químicos da Água , Grafite/química , Adsorção , Poluentes Químicos da Água/análise , Água , Naftalenos/análise , Hidrogéis
15.
Environ Pollut ; 331(Pt 1): 121895, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37236593

RESUMO

Organic pollutants in aquatic environment could have important implications on pollution stress on aquatic organisms and even on the risk of human exposure. Thus, revealing their occurrence in aquatic environment is essential for water quality monitoring and ecological risk purposes. In this study, a comprehensive two-dimensional gas chromatography connected with time-of-flight mass spectrometry (GC × GC-TOF-MS) was applied, to enable non-target and target analysis of pollutants in the Yongding River Basin. Based on the isotopic patterns, accurate masses and standard substances, certain environmental contaminants were tentatively identified which including polycyclic aromatic hydrocarbon (PAHs), organochlorine pesticides (OCPs), phenols, amines, etc. The compounds with the highest concentration were naphthalene (109.0 ng/L), 2,3-benzofuran (51.5 ng/L) and 1,4-dichlorobenzene (35.9 ng/L) in Guishui River. Wastewater treatment plants (WWTPs) discharges were a main source of pollutants in Yongding River Basin, as the types of compounds screened in the downstream river were relatively similar to those from WWTPs. According to the target analysis, a number of pollutants were selected due to the acute toxicity and cumulative discharge from WWTPs and downstream rivers. Three PAHs (naphthalene, Benzo(b)fluoranthene and pyrene) homologues showed moderate risk to fish and H. Azteca in Yongding River Basin, while the rest of the measured chemicals showed low ecological impact across the entire study area based on the risk assessment. The results are helpful for understanding the necessity of high-throughput screening analysis for assessing water quality of rivers and the discharge emissions of pollutants from WWTPs to the river environment.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Humanos , Poluentes Ambientais/análise , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Naftalenos/análise , Medição de Risco , Poluentes Químicos da Água/análise , China
16.
Sci Total Environ ; 883: 163621, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37080302

RESUMO

Polychlorinated naphthalenes (PCNs) are dioxin-like compounds that have been reported to be present in a wide variety of foodstuffs. Milk-based infant and toddler formula sometimes plays an important role in the diet of young children and could potentially cause adverse effects if contaminated with PCNs. This study investigated the concentrations of PCNs in commercial milk-based formula produced in different countries and sold on the Chinese market for three age groups: 0-6, 6-12 and 12-36 months. The total concentrations of PCNs in 72 samples from different countries of formula based on cow milk ranged from 7.8 to 30.3 pg/g whole weight (ww). Although the PCN concentrations in formula produced in Asia, Europe and South Pacific varied, all had comparable toxic equivalent (TEQ) values. Tri-CNs were the predominant PCN homologue in all samples. No significant differences in the concentrations of PCNs were found between samples of formula for each of the three age groups. The mean TEQ for PCNs in goat milk formula samples (0.0031 pg TEQ/g ww) was higher than the value for cow milk formula (0.0009 pg TEQ/g ww) produced in China, and the proportion of higher chlorinated PCNs in goat milk formula was also higher. Based on dry weight, the mean concentration of PCNs in the raw cow milk (119 pg/g dry weight (dw)) used to produce infant and toddler formula was higher than that in the actual formula (24.2 pg/g dw), and the PCN profiles also varied between the raw milk and formula. A risk assessment indicated that, in China, consuming formula poses a lower risk to infants and toddlers from based on exposure to PCNs compared with consuming breast milk.


Assuntos
Dioxinas , Leite , Animais , Leite/química , Dioxinas/análise , China , Naftalenos/análise , Ásia , Monitoramento Ambiental
17.
Environ Geochem Health ; 45(7): 5415-5439, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36976374

RESUMO

The research aims to evaluate the seasonal differences in the distribution, source, and risks of water-contaminated PAHs. The PAHs were extracted by the liquid-liquid method and analyzed with GC-MS, and a total of eight PAHs were detected. There was a percentage increase in the average concentration of the PAHs from the wet to the dry season in the range of 20 (Anthracene)-350 (Pyrene)%. Total PAHs (∑PAHs) range from 0.31 to 1.23 mg/l in the wet period and from 0.42 to 1.96 mg/l in the dry period. The distribution of the average PAHs in mg/l showed that Fluoranthene ≤ Pyrene < Acenaphthene < Fluorene < Phenanthrene < Acenaphthylene < Anthracene < Naphthalene in wet period and while Fluoranthene < Acenaphthene < Pyrene < Fluorene < Phenanthrene < Acenaphthylene < Anthracene < Naphthalene in the dry period. The children were exposed to non-carcinogenic risk through non-dietary ingestion due to the accumulative effect (HI) of the PAHs in the dry period. Furthermore, the naphthalene was responsible for ecological and carcinogenic risk in the wet period, while the fluorene, phenanthrene, and anthracene were responsible for ecological and carcinogenic risk in the dry period. However, while adults and children are both susceptible to carcinogenic risk through the oral channel during the dry period, only children are susceptible to non-carcinogenic risk through this pathway. The multivariate statistical analysis revealed the influence of physicochemical parameters on the detected PAHs and also showed the PAHs' sources to be mainly combustion, pyrolysis, and vehicular emission.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Criança , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Acenaftenos/análise , Estações do Ano , Água/análise , Fluorenos/análise , Pirenos , Naftalenos/análise , Antracenos/análise , Medição de Risco , Monitoramento Ambiental
18.
Environ Pollut ; 322: 121245, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758928

RESUMO

Polychlorinated naphthalenes (PCNs) are toxic and can accumulate through the food chain. PCNs have been detected in different categories of foods. Intake of animal-derived foods is an important pathway for human exposure to PCNs. However, information on PCNs in meat from farmed animals is scarce. In this study, PCNs were assessed in beef sourced from local markets in Beijing and six provinces in China. The mean PCN concentrations in beef samples from the seven regions varied from 41.2 to 88.7 pg/g wet weight (ww). The homologue profiles of PCNs in the specimens were similar, with tri- and di-CNs being dominant. The mean concentration of PCNs in the flank (74.7 pg/g ww) was higher than that in the round (58.2 pg/g ww) or shank (53.6 pg/g ww), likely because the former contained a higher proportion of lipids than the latter. Significantly different PCN distributions in beef and dairy cow milk were identified using machine learning. The toxic equivalencies (TEQs) of PCNs in all beef samples ranged from 0.0003 to 0.022 pg TEQ/g ww. PCNs contributed to approximately 4.6% of the total TEQ values of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, polychlorinated biphenyls, and PCNs in the beef. Health risks related to the intake of PCNs through beef consumption by the average person living in China were minimal.


Assuntos
Bifenilos Policlorados , Dibenzodioxinas Policloradas , Animais , Feminino , Bovinos , Humanos , Naftalenos/análise , China , Bifenilos Policlorados/análise , Carne , Dibenzofuranos Policlorados
19.
Artigo em Inglês | MEDLINE | ID: mdl-36834182

RESUMO

The concentrations of polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were determined in soil samples collected around an industrial park in Northwest China, to investigate the potential impacts of park emissions on the surrounding environment. The total concentration ranges of PCBs, PCNs, and PCDD/Fs in the soil samples were in 13.2-1240, 141-832, and 3.60-156 pg/g, respectively. The spatial distribution and congener patterns of PCBs, PCNs, and PCCD/Fs indicated that there might be multiple contamination sources in the study area, so source apportionments of PCBs, PCNs, and PCCD/Fs were performed by a positive matrix factorization model based on the concentrations of all target congeners together. The results revealed that these highly chlorinated congeners (CB-209, CN-75, and OCDF) might be derived from phthalocyanine pigments, the legacy of Halowax 1051 and 2,4-D products, which together contributed nearly half of the total concentration of target compounds (44.5%). In addition to highly chlorinated congeners, the local industrial thermal processes were mainly responsible for the contamination of PCBs, PCNs, and PCDD/Fs in the surrounding soil. The total carcinogenic risk of PCBs, PCNs, and PCDD/Fs in a few soil samples (0.22 × 10-6, 0.32 × 10-6, and 0.40 × 10-6) approached the threshold of potential carcinogenic risk (1.0 × 10-6). Since these pollutants can continuously accumulate in the soil, the contamination of PCBs, PCNs, and PCDD/Fs in surrounding soil deserves continuous attention.


Assuntos
Benzofuranos , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Humanos , Bifenilos Policlorados/análise , Dibenzofuranos , Solo , Naftalenos/análise , China
20.
Sci Total Environ ; 870: 161899, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36716884

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are generated by incomplete combustion of organic matter. They have health effects in multiple organs and can cause lung, skin, and bladder cancers in humans. Although data regarding their toxicity is available, information on the absorption, distribution, metabolism, and excretion of PAHs in humans is very limited. In the present study, deuterium-labeled naphthalene (Nap), fluorene (Flu), phenanthrene (Phe), and pyrene (Pyr) were orally administered as a single dose (0.02-0.04 mg/kg) to eight healthy adults. Both serum and urine samples were monitored for 72 h after the exposure. Parent compounds and PAH metabolites (monohydroxy-PAHs; OH-PAHs) were measured by headspace-solid phase microextraction coupled with gas chromatography-mass spectrometry and high-performance liquid chromatography-tandem mass spectrometry, respectively. Based on the time-concentration profiles in serum and urine, non-compartmental analysis was performed, and two-compartment models were constructed and validated for each PAH. Subsequently, all of the parent compounds were rapidly absorbed (Tmax: 0.25 to 1.50 h) after oral administration and excreted in urine with a biological half-life (T1/2) of 1.01 to 2.99 h. The fractional urinary excretion (Fue) of OH-PAHs ranged from 0.07 % to 11.3 %; their T1/2 values ranged from 3.4 to 11.0 h. The two-compartment models successfully described the toxicokinetic characteristics of each PAH and its metabolites. Fue and the two-compartment models could be useful tools for exposure simulation or dose-reconstruction of PAHs. The results of this study will provide useful information for interpreting biomonitoring data of PAHs.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Humanos , Toxicocinética , Pirenos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Fenantrenos/toxicidade , Fenantrenos/análise , Naftalenos/toxicidade , Naftalenos/análise , Fluorenos , Biomarcadores/urina , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...